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RANGE RESIDUATED MAPPINGS

*
M. F. Jdanowitz

1. Introduction. A digital picture may be thought of as a mapping
d:X - L where X is a finite set and L a finite chain or the cartesian
product of finitely many such chains. The idea is that X 1is of the form
S x T, where S 1is the set consisting of the first s, and T the set
consisting of the first t positive integers, while L represents the
numerical coding of the brightness settings of the color guns that produce
the picture. For a monochromatic picture, there would be only a single
gun, so that L would be a chain. Thus d(x) yields the color or inten-
sity level at site x. The mapping d produces a clustering of X into

disjoint subsets by the rule
Ah = {x ¢ X:d{x) = h} (h - L)
It is sometimes convenient to think instead of the clusters

Bh = {x r X:d(x) < h} (h. L)

and note that this produces a situation quite analogous to the model for
cluster analysis that was described in [2]. In order to demonstrate an
essential difference between the two situations, it turns out to be useful
to examine in some detail the nature of the earlier model. One is given
a finite (nonempty) set X and a dissimilarity measure on X. This is a
mapping d:X x X ~ L, where L denotes the nonnegative reals and d

satisfies

*Research supported by ONR Contract N-00014-79-C-0629
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(DC1) d(a,b) = d(b,a)
(DC2) d(a,a) =

1
o

for all a,b « X. One associates with d a numerically stratified clustering

Td:L » P(X x X) defined by the rule
Td(h) = {(a,b):d(a,b) < h} (h L)

The mapping Td:L » P(X x X) turns out to be residual in the sense of [1],
p. 11. This situation may then be generalized by taking L to be a join
semilattice with 0, replacing P(X x X) with a bounded poset M, and

defining an L-stratified clustering to be a residual mappinga C:L - M as

in [2], p. 6). It is useful to recall here that C:L > M is residual if

C is isotone and there exists an isotqﬂg mapping C*:M - L such that

(1) c*c(h) < h
(2) cC*(m)

I v

m

for all m. M, h. L. The mapping C* 1is called the residuated mapping
associated with C, and the reader is referred to [1] for further details.
One often wishes to take a residual mapping C:L - M and shift the output

levels by means of a mapping ©:L -~ L. The only reasonablie choice for such
a n 1is to take & to be residual since one is then guaranteed that

C -2k~ M is residual. Mow this treats the 0 element of L as a dis-

tinguished element, since ©o*(0) = 0 for every residuated mapping ¢* on

L. This makes sense in the cluster analysis context, since d(a,b) = 0 is
generally taken to mean that a,b cannot be distinguished in terms of the

qgiven input data.
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In the context of digital images, one does not wish to distinguish the
0 element of L in the above manner. In order to avoid this, it becomes
necessary to modify the notion of an L-stratified clustering. Specifically,
we shall drop the requirement that M have a least element and consider
mappings C*:M > L that are residuated when considered as mappings from
M into the order filter generated by their range. Thus there exists an
isotone mapping C:F ~M, where F denotes the aforementioned order filter,

and C,C* are linked by the requirement that

(3) CC*(m) >m for all me M

[v

(4) c*C(h)

A

h provided h > some C*(m) for m . M.

By [1], Theorem 2.5, p. 10, this amounts to sayina that the preimage under
C* of o principal ideal of L is either empty or itself a principal ideal

of L. To be more specific, if we are to work with a digital picture, we

are qiven a finite nonempty set X and a mapping d:X -»L. If pP'(X) denotes

the semilattice formed by the nonempty subsets of X, then d may be

extended to a mapping d*:P'(X) ~ L by the rule
(5) d*(A) = v{d(x):x . A}

for every nonempty subset A of X. It is then easy to see that d* is
residuated on the order filter generated by its range. Such mappings will

henceforth be called range-residuated. They have already been used in [3]

in connection with an investigation of ordinal filters in digqital imaqery,
and in [4] in connection with a characterization of the semilattice of weak
orders on a finite set. We agree to let RR(P,Q) denote the collection

of range-residuated mappings of the poset P into the poset 0, and




RR+(Q,P) the associated collection of residual mappings from order filters
of O into P. Incase P =0Q, we shal’ use RR(P) and RR+(P) in
place of RR(P,P) or RR(P,P). If P is a finite chain then RR(P) is
nothing more than the set of all isotone mappings on P, while if P is

a finite join semilattice, then RR(P) conissts of the join endomorphisms
of P. If digital pictures are thought of as elements C of RR+(L,M),
and if L is a finite chain, this shows that the levels of C may be
shifted by means of any isotone mapping # on L to produce a new pic-
ture C 9. RR+((L.M). In view of all this, we now embark on an inves-

tigation into order theoretic properties of these mappings.

2. Range-Residuated Mappinas. Let P,Q be posets each havina a

largest element 1. For each q - 0, the constant mapping KO:P - N

defined by Kq(X) = q for all x ¢ P is range-residuated, with <; given
+

by Kq(Y) = ]p for all y > q. If Q happens to be a join semilattice,

then the join translation (x) = x vg is in RR(Q) with 1 (y) =y

q
for all y > q. Before proceeding, let us develop some elementary proper-
ties of range-residuated mappings. They are basically generalizations of

results on residuated mappings, but are included here for completeness.

THEOREM 1 (see [1], Theorem 2.8, p.14). Let P,Q,S be posets.

»« RR(P,Q) and W . RR(Q,S). Then 4¢:P = R is range-residuated with
+ +

Proof: Evidently :4:P ~ R is isotone. If p .« P, then = 4(p) is in

the domain of w+, so that w+w¢(p) > #(p) and we have
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0" 1% 9s(p) > 676(p) > p. On the other hand, if s > we(p), then <*(s) > #(p)
puts w+(s) in the domain of ¢+. Thus ¢+w+(s) can be formed and
;¢¢+w+ waw+(r) < r. In that the domain of ¢+ ° W+ is precisely the order

filter generated by the range of V¢ , this completes the proof.

COROLLARY 2.  RR(P) forms a semigroup with identity.

Proof: The identity map acts as a multiplicative identity element for

RR(P).

Assuming that mappings are written on the left, we also have

COROLLARY 3. RR(P) has a left (but not right) zero element.

Proof: Let x ¢ p and ¢ ¢ RR(P). One simply notes that
ok, = “o(x) and Ked = Ky
so that Ky is a left (but not right) zero element for RR(P).

It is easy to show that any left zero element of RR(P) is of the form
oy for some x ¢ P. Of special interest is the case where P is bounded
and one works with Ko

If ¢:P > Q 1is a residuated mapping with associated residual mapping
¢+:Q > P, and if both P and Q are equipped with their dual orderings,
then ¢+ becomes residuated with ¢ its associated residual mapping. This
leads to an obvious duality between residuated and residual mappings. This

duality does not carry over to range-residuated mappings since + - RR(P,Q)

.4




has an associated residual mapping whose domain is an order filter of Q
rather than being all of Q. Bearing this in mind, we agree to say (as in
[4]) that ¢ « RR(P,0) s range-closed if ¢(a) < g < ¢(p) implies

q . range ¢; to say that ¢ is dually range-closed will be to say that
the range of ¢+ is an order filter of P. An obvious modification of

the proof of [1], Theorem 13.1, p. 119 now produces

THEOREM 4. Let P,Q be bounded posets. For & - RR(P,Q), the
following are equivalent:

(1) ¢ is range-closed.

(2) The restriction of ¢ to [¢+¢(0), 1] is a surjection onto
[o(0), ¢(1)].

(3) In the interval [¢(0), 1] of Q, g A &(1) exists and equals
0¥ ().

+

(4) ¢ is injective.

Similarly, an obvious modification of the proof of [1], Theorem 13.1%,

p. 119 would produce

THEOREM 5. Let P,Q be bounded posets. For & . RR(P,Q), the

following are equivalent:
(1) ¢ is dually range-ciosed.
(2) o is a surjection onto [o*4(0), 11.
(3) Forall p P, pv 4 5(0) exists and equals ¢ ¢(p).
(4) The restriction of & to [679(0), 1] is injective.




.........

As in [1], p. 120, we also agree to call ¢ « RR(P,Q) weakly reguiar

in case ¢ 1is both range-closed and dually range-closed. Examples of
such mappings are provided by the constant mappings K, as well as by the
join translations Ty The analog of [1], Theorem 13.2, p. 121 may now

be stated as

THEOREM 6. Let P,Q be bounded posets.

(1) If % < RR(P,Q) is weakly regular, then its restriction to

(5+¢(0), 1] is an isomorphism onto [¢(0), #(1)]; furthermore, for p . P

and q > ¢(0), we have that p v o' 6(0) exists and is given by felp),
and that q » ¢(1) exists in [¢(0), 1] and is given by ¢+¢(q).

(2) Let a P and b,c e QO with b < c. Suppose that p v a exists

forall pcP, that qac exists forall q>b in Q, and that t is
an isomorphism of [a,1] onto ({b,c]. If ¢:P > Q is defined by
#(p) = t(p v a), then ¢ . RR(P,Q), ¢ is weakly regular, and ¢+ is

given by ¢*(q) = (g ac) for q>b.

Recall now that a pair (a,b) of elements of a lattice is modular and
denoted M(a,b) if x <b implies that x v (a A b) = (x v a) a b; dually,
a dual modular pair is denoted M*(a,b) and signifies that x > b implies

x A {avb)=(xaa)vb. He then have

THEOREM 7. Let P be a bounded lattice and ¢ - RR(P) a range-closed

idempotent. Then M(p+¢(0), (1)) holds.

Proof: Let a = ¢+¢(0) and b =¢(1). If aab=<x<b, then x = ¢ly)

for some y -~ a by Theorem 4. Hence




1

x = o670 o(x) > gt (x va)=(xva)absx

shows x = (x v a) Ab. 1In general, if x <b, then aab<xv(ananb)<hb

shows that

xvi(aab)=[xv({(aab)valab={(xva)ab,
whence M(a,b).

Dually, we have

THEOREM 8. Let P be a bounded lattice and ¢ < RR(P,Q) a dual range-

closed idempotent. Then M*(4(1), ¢+¢(0)). and 1= o(1) v ¢'6(0).

Combining Theorems 7 and 8, we generalize [1], Theorem 13.4, p. 123.

THEOREM 9. Let P be a lattice and ¢ ¢ RR{(P). The following are

necessary and sufficient conditions for ¢ to be a weakly regular idempotent:

(1) 476(0) v o(1) =1
(2) M(6*e(0), ¢(1)) and M*(o(1), ¢¥(0))
(3) o(x) = [x v ¢76(0)] A o(1).

Proof: Let avb=1, Ma,b) and M*(b,a). Define ¢ and y by

o(x) = (x va) ab (x ¢ p)
p(x) = (x A b) va (x > a ab).

Then

o(x) = [(x va) ablvas=xvasx

- o a e




and for x >a b,

op(x) = [(x Ab) valab

1

(x Ab) v(aab)=xabc<x

Thus ¢ ¢ RR(P) with y = ¢+. The fact that ¢ is a weakly regular idem-
potent is now also clear. For the converse, apply Theorems 7 and 8.

Continuing along these lines, we say that a range-residuated mapping

¢ « RR(P,Q) 1is totally range-closed if the image under ¢ of a principal

ideal of P s necessarily a convex subset of Q. We then have

THEOREM 10 (See [1], Theorem 13.5, p. 124). Let P be a bounded lattice.

The following conditions on a element ¢ of RR(P) are then equivalent:

(1) ¢ is totally range-closed.

(2) ¢ range-closed implies ¢¢ range-closed for every ¢ ¢ RR(P).

(3) For x> ¢(0), yels o[67(x) Ayl=xn oly).

Proof: (1) =—> (2) is clear.

on P

(2) -=> (3) If x > ¢(0), choose a residuated mapping
so that ¢(1) = y. Then ¢y is range-closed, and we note that
o6t (x) ¥yl = ow s (x) = (ew)(60)T(x) = x & ou(1) = x A 8ly).

The fact that ¢(0) = 0 was used to guarantee that ¢+¢+(x) could be

formed.

(3) => (1) Let b ¢ P. We are to show that ¢([0,b]) = [4(0), 4(b}].

But if ¢(0) < x < ¢(b), then by (3),

x = ¢(b) A x = o[b A ¢ (x)].




10.

If we agree to call ¢ ¢ RR(P,Q) dual totally range-closed in case
the image under ¢+ of a principal filter of the domain of ¢+ is a

principal filter of P, we then have

THEOREM 11. Let P be a bounded lattice, and ¢ « RR(P). The

following are then equivalent:

(1) ¢ 1is dual totally range-closed.

(2) ¢ dual range-closed implies y¢ dual range-closed.

(3) For y > ¢(0), xc Lo [o(x)vyl=xvae(y).

The above is the obvious generalization of [1], Theorem 13.6, p. 124, and
its proof will be omitted.

As in the case of residuated mappings, there is a strong tie between
the notions of range-closed and modularity. A further discussion of this

topic will be covered in a later paper.

3. Annihilator Properties of Range-Residuated Mappings. In this

section, it will be assumed that we are working in a fixed bounded poset P.
Recall that RR(P) is a semigroup with identity element 1 and left zero
elements {KXIX - P}. The left zero element Ko will be of special interest.

For $  RR(P), we define the right annihilator of ¢ by the rule

R(¢) = {u:oy = K¢(0)} 5
similarly, the left annihilator of ¢ is defined by

L(p) ={::50 = K¢(O)}'

We shall make strong use of the fact that

Y




g

1.
(5)  ov = ky(gy <= ¥(1) < ¢"0(0).

The idea now is to relate order properties of the poset P to annihilator
properties of the semigroup RR(P). To show that there is some hope in

doing this, we let

{R(¢):¢ < RR(P)}
{L(¢):¢ ¢ RR(P)}

~
i

—
n

with both sets partially ordered by set inclusion. We may then define

mappings F:R > P, G:L - P by the rules

6" 6(0)
#(1)

F(R(%))
G(L(o))

and note that F 1is an isomorphism of R ontc P, and G 1is a dual iso-

morphism of L onto P. To see this, note first that if R(¢) < R(u), then

*e*to(0) T Fo(0) T *o¥e(0) T Fal0)

so that by (5), ¢+¢(0) 5_a+a(0). If conversely, ¢+¢(0) < w+a(0), then
_ B Lt + . - ~ (.
by = “p(0) = W(1) < ¢7¢(0) < a'a(0) —> ap Ka(0)* So R(¢) = R(u).

We would be done if we could show F to be onto. But this follows from

the observation that if B  is defined by Bx(p) 0 if p<x and 1

otherwise, then 8 is residuated with BIBX(O) = x. A similar argument

works for G. We now have

THEOREM 12. Let P be a bounded poset. Then:

(1) P 1is a meet semilattice if and only if the right annihilator of

each element of RR(P) is a principal right ideal generated by an idempotent.

s




12.

(2) P is a join semilattice if and only if the left annihilator of

each element of RR(P) is a principal left ideal generated by an idempotent.

Proof: (1) Assume P to be a meet semilattice. Then for p « P, we may

define ep by the rule ep(x) =x (x <p) and p otherwise. Noting that

ﬂp is a range-closed idempotent residuated mapping, it follows from (5)

that ¢y = K¢(0) <=> = 8¢+¢(0)w. The converse follows from Theorem 4.
(2) If P 1is a join semilattice, then by (5), u¢ = “.(0) <>

L= w1¢(]). The converse follows from Theorem 5.

4. Baer LZ-semigroups. Llet S be a semigroup with a two-sided zero
element 0. For a given x ¢ S, define the left and right annihilators of

x by the rules

L(x) = {y ¢ S:yx = 0}

%
n

R(x) = {y ¢ S:xy = 0}.

To say that S 1is a Baer semigroup ([1], p. 104) is to say that for each

x . S there correspond idempotents e s fx such that

L(x) = {y ¢ S:y yfx} = Sf,

R(x)

i
(]
1]

{y ¢ S:y exy} exS.

An introduction to these semigroups is contained in [1], and an attempt is
made there to relate properties of bounded posets to properties of suitable
associated semigroups. For further details, the reader is referred to

[1]. The Vink between Baer semigroups and lattices is made by means of

certain residuated mappings. In order to develop a similar theory for




range-residuated mappings, one needs an analog of a Baer semigroup that

only has a one-sided zero element. This '@ now proceed to introduce.

DEFINITION. A semigroup S is said to be a Baer LZ-semigroup if

(1) S has a distinguished left zero element 2z, and
(2) For each x ¢ S, there correspond idempotents e fx such

that

t{x)}
R(x)

{y ¢ Styx = yz} = {y ¢ S:y yfx},

X2} = {we S:w

{w e Sixw exw}.
Unless otherwise specified, S will denote such a semigroup, and

L(S)
R(S)

{L(x):x e S}
{R{x):x ¢ S}

with both L{S) and R(S) partially ordered by set inclusion. To say

that a poset P can be coordinatized by such an S will be to say that

P is isomorphic to R(S). MNote that if z is a two-sided 0, then

becomes a Baer semigroup in the sense of [1], p. 104. Note also that the

left zero elements of S correspond to the elements of the form xz (x : S).

THEOREM 13. S has a multiplicative identity.

Proof: Let L(z) = Se and R(z) = fS with e, f idempotent. Then

1

R(z) = {y - S:zy

L(z) = {y « S:yz = yz} =S shows e tobe a left identity.

zz}= S shows f to be a right identity for S, while

Abcdnd

P G S

PO |




14,

If we agree to let PRI(S), PLI(S) denote the set of principal right,
left ideals of S with both sets partially ordered by set inclusion, we

also have

THEOREM 14. (1) The mappings L:PRI(S) -+ PLI(S), R:PLI(S) + PRI(S)
defined by L(xS) = L(x), R(Sx) = R(x) set up a galois connection in the

sense of [1], p. 18.

~

(2) L=LoRoL and R=RoLoR.

(3) xS ¢ R(S) <= x5 = (R s L)(x), and
R)(x).

(4) The restriction of L to R(S) is a dual isomorphism of R(S)

Sx ¢ L(S) <= Sx = (E

[-]

onto L(S) whose inverse is the restriction of ﬁ to L(S).

Proof: In view of the similarity of this result to [1], Theorem 11.1, p. 95,

we restrict our attention to the proof of (1).

If xScyS, then x =yw for some we S. Then a e L(y) implies

ay = az, SO ax = ayw = azw = ax. Thus
xS < yS => L(y) < L(x).

Similarly, if Sx < Sy, then x =wy, so a e R(y) implies xa = wya =

wyz = xz, thereby putting a e R(x). In other words,
Sx < Sy —=> R(y) < R(x).

The fact that a ¢ L{x) implies ax = az also puts x ¢ R(a), so

xS ¢ (R o L)(xS); similarly, Sx c (L o R)(Sx), thus completing the proof.

e
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15.

We shall frequently need )

LEMMA 15. If eSeR(S) with e = e2, then z = ez.
Proof: Let eS = R{x). Since z ¢ R(x), it follows that 2z = ez.

For M a subset of S, we agree to let R(M) = {x:mx = mz for all
me M} and note that if R(M) = eS with e = e°, then eS = A {R(m):m ¢ M) \
in R(S). For each fixed x ¢ S, we define mappings ¢, oMy iR > R by the

rules

(R o L)(xe)

t

¢, (eS)
n,(es) = R(e*x)

where Se# = L{e), and e#

is idempotent. The damain of n s taken to ——
be {eS ¢ R(S):¢X(ZS) c eS}. From here on in, the elements e,f,g,h

(with or without superscripts) will, unless otherwise specified, cenote
idempotents. We agree further to let R = R(S) and L = [(S). We then

have

THEOREM 16.  For each x ¢ S, ¢, « RR(R), with ¢: =, .

Proof: We begin by showing bys Ny to be well defined and isotone. Ac-

cordingly, Tet eS c fS in R. Then e = fe and y ¢ L(xf) implies
yxe = yxfe = yze = yz

thus showing y ¢ L(xe). It follows that ¢, s well defined and isotone.




16.

Now let ¢X(zS).5 eS c fS in R, with Se# = L(e) and Sf# = L(f).
Then L(f) < L(e), so f# = f#e#. If ye¢ R(e#x), then e#xy = e#xz,

and then

# # #

fixy = fe"xy f# ez = £

e xz = f xz,

thus putting y ¢ R(f#x). Consequently, Ny is well defined and isotone.
Suppose now that ¢x(eS) < fS in R. Then ¢X(zS) < fS, so xz = fxz,
and f#xz = f#fxz = f#z. It follows that

f#xe = f#fxe = f#z = f#xz,

whence eS g_R(f#x). On the other hand, if ¢ (2S) < fS, and S ¢ R(Fx),

then
f#xe = f#xz = f#z

puts xe in R(SF') = (R o L)(fS), so ¢ (eS) = (Ro L)(xe) < fs. This

shows that Ny ® ¢:, as claimed.

Actually as is seen by the next result, L = R(S) is in fact a bounded

lattice. The proof is similar to that of (1), Theorem 12.2, p. 107.

LEMMA 17. L = R(S) is a bounded lattice.

Proof: Let €S, fS ¢ L with Se# = L{e), and Sf# = L(f). If gS = R(f#e),

then
(f#e)(eg) = f#eg = ez

shows eg ¢ R(f#e) = ¢S, so eg = geg and eg 1is idempotent. Now let
X ¢ R({e#,f#}). Then

"




17.

SO

puts X ¢ R(f#e) = gS, and x = gx = egx.
If conversely, x = egx, then

e#egx e

e#x

f#x

f#egx = f#ez = f#z

puts x e R({e#,f#}). It is immediate that eS n fS = egS ¢ L, and this
shows L to be a meet semilattice.

In order to show that L 1is a join semilattice, it suffices by Theorem 14
to show that ((S) 1is a meet semilattice. Accordingly, we let Se, Sf ¢ L(S)
with e'S = R(e), f'S = R(f), and Sg = L{ef'). We shall show that
Sf n Se = Sg n Se = Sge. Note first that

(ge)(ef') = gef' = gz.
By Lemma 15,
gez = gef'z = gz,

so (ge)(ef') = gz = gez, and ge ¢ L{ef') = Sg. It follows that ge = geg,
so ge 1is idempotent.

If x e L({e',f'}) then xe' = xz, so x = xe. It follows that
xef' = xf' = xz, and x = xg. Consequently, x = xg = xge. On the other

hand, if x = xge, then

'
LR W S WP U S >




18.
xe' = xgee' = xgez = xz,

so x ¢ L(e'). Also, a second application of Lemma 15 produces

L xf' = xgef' = x9z = xgez = xz i

thus showing that x ¢ L(f').

# An immediate consequence of Theorem 12 and Lemma 17 is

THEOREM 18. For a bounded poset P, the following conditions are

equivalent:
(1) P is a lattice.

(2) RR(P) is a Baer LZ-semigroup.

(3) P can be coordinatized by a Baer LZ-semigroup.

The question of what it means for the mapping x » ¢x to be a semi-

group homomorphism of S 1into RR(R(S)) is settled by

THEOREM 19. Let S be a Baer LZ-semigroup, and L = R(S). The

following conditions are then equivalent:

(1) The mapping x » ¢, is a semigroup homomorphism of S into

RR(L).

(2) ¢x(zs)§¢xy(zs) for every x,y in S.

(3) a ¢ L{xyz) — ax e L{yz) for all x,y in S.

Proof: (1) => (2) is clear.

(2) => (3). Let a ¢ L(xyz). By hypothesis, ¢x(z$) (zS), so

< ¢xy

L(xyz) < L(xz). Thus a ¢ L(xyz) => a ¢ L(xz), whence axz = az. But then

axyz = az = axz puts ax ¢ L(yz), as claimed.

1
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(3) > (1). For eScL, o8 (es) = (R o L)(xg), where gS =
(ﬁ o L)(ye), and ¢xy(eS) = (ﬁ o L)(xye). We would be done if we could

show that L(xg) = L(xye). To see this, note that
a e L(xg) = ax € L(g) = L(ye).
Thus
az = axz = axg = axye,
and this puts a ¢ L(xye). The reverse inclusion is established in a
similar manner.
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